Skip to main content

Using VoyageAI Embeddings with MongoDB-RAG

This example demonstrates how to use VoyageAI's embedding models with MongoDB-RAG for vector search.

Prerequisites​

  1. Install the mongodb-rag package:

    npm install mongodb-rag voyageai
  2. Get a VoyageAI API key from VoyageAI's website.

  3. Set up your environment variables:

    export VOYAGE_API_KEY=your_api_key_here

Basic Usage​

import MongoRAG from 'mongodb-rag';
import dotenv from 'dotenv';

// Load environment variables
dotenv.config();

async function main() {
// Initialize MongoRAG with VoyageAI provider
const rag = new MongoRAG({
mongoUrl: 'mongodb+srv://your-connection-string',
database: 'ragdb',
collection: 'documents',
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-3' // This is the default model
}
});

// Connect to MongoDB
await rag.connect();

// Ingest some documents
await rag.ingestBatch([
{
documentId: 'doc1',
content: 'MongoDB is a document database with the scalability and flexibility that you want with the querying and indexing that you need.',
metadata: { source: 'MongoDB Website', category: 'Database' }
},
{
documentId: 'doc2',
content: 'Vector search in MongoDB allows you to search for documents based on semantic similarity using vector embeddings.',
metadata: { source: 'MongoDB Documentation', category: 'Search' }
}
]);

// Perform a search
const results = await rag.search('How does vector search work?');
console.log(results);

// Close the connection
await rag.close();
}

main().catch(console.error);

Using Different VoyageAI Models​

VoyageAI offers several embedding models optimized for different use cases:

// For general purpose (default)
const rag = new MongoRAG({
// MongoDB configuration...
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-3' // Default model
}
});

// For higher quality embeddings
const ragLarge = new MongoRAG({
// MongoDB configuration...
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-3-large' // Higher quality, larger model
}
});

// For faster, more efficient embeddings
const ragLite = new MongoRAG({
// MongoDB configuration...
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-3-lite' // Faster, more efficient
}
});

// For code-specific embeddings
const ragCode = new MongoRAG({
// MongoDB configuration...
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-code-3' // Optimized for code
}
});

// For finance-specific embeddings
const ragFinance = new MongoRAG({
// MongoDB configuration...
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-finance-2' // Optimized for finance
}
});

// For legal-specific embeddings
const ragLaw = new MongoRAG({
// MongoDB configuration...
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-law-2' // Optimized for legal content
}
});

Advanced Configuration​

You can combine VoyageAI embeddings with advanced search options:

const rag = new MongoRAG({
mongoUrl: 'mongodb+srv://your-connection-string',
database: 'ragdb',
collection: 'documents',
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-3',
batchSize: 50 // Process 50 documents at a time
},
search: {
maxResults: 10,
minScore: 0.75,
similarityMetric: 'cosine'
}
});

// Search with metadata filtering
const results = await rag.search('vector search techniques', {
filter: { category: 'Search' }
});

Error Handling​

try {
const rag = new MongoRAG({
// MongoDB configuration...
embedding: {
provider: 'voyage',
apiKey: process.env.VOYAGE_API_KEY,
model: 'voyage-3'
}
});

await rag.connect();
const results = await rag.search('vector search');
} catch (error) {
if (error.message.includes('VoyageAI API error')) {
console.error('Error with VoyageAI API:', error.message);
// Handle VoyageAI specific errors
} else {
console.error('General error:', error);
}
}