Skip to main content

API Reference

MongoRAG Class​

Constructor​

Creates a new instance of the MongoRAG class.

const rag = new MongoRAG({
mongoUrl: string,
database: string,
collection: string,
embedding: {
provider: 'openai',
apiKey: string,
model?: string,
batchSize?: number,
dimensions?: number
},
search?: {
maxResults?: number,
minScore?: number,
similarityMetric?: 'cosine' | 'dotProduct' | 'euclidean'
}
});

Parameters​

  • config.mongoUrl (string, required): MongoDB connection URI.
  • config.database (string, required): Default MongoDB database name.
  • config.collection (string, required): Default MongoDB collection name.
  • config.embedding (object, required):
    • provider (string, required): Embedding provider (openai, ollama, or voyage are supported).
    • apiKey (string, required): API key for the embedding provider (not required for ollama).
    • model (string, optional): Model name. Defaults depend on provider:
      • OpenAI: 'text-embedding-3-small'
      • Voyage: 'voyage-3' (other options: voyage-3-large, voyage-3-lite, voyage-code-3, voyage-finance-2, voyage-law-2)
      • Ollama: requires model specification
    • baseUrl (string, optional): Base URL for Ollama API (default: 'http://localhost:11434').
    • batchSize (number, optional): Batch size for embedding generation (default: 100).
    • dimensions (number, optional): Number of dimensions in the embedding space (default: 1536).
  • config.search (object, optional):
    • maxResults (number, optional): Maximum number of results to return (default: 5).
    • minScore (number, optional): Minimum similarity score threshold (default: 0.7).
    • similarityMetric (string, optional): Similarity function for search (cosine, dotProduct, euclidean). Defaults to 'cosine'.

Methods​

connect()​

Establishes connection to MongoDB.

await rag.connect();

disconnect()​

Closes the MongoDB connection.

await rag.disconnect();

ingestBatch()​

Ingests a batch of documents into the vector store.

await rag.ingestBatch(documents, {
batchSize?: number,
preprocessor?: Function
});

Parameters:

  • documents (array, required): Array of documents to ingest
  • options (object, optional):
    • batchSize: Override default batch size
    • preprocessor: Custom preprocessor for this batch

Returns: Promise<void>

Performs a vector search for similar documents.

const results = await rag.search(query, {
database?: string,
collection?: string,
maxResults?: number,
minScore?: number
});

Parameters:

  • query (string, required): Search query
  • options (object, optional):
    • maxResults: Maximum number of results
    • minScore: Minimum similarity score
    • filter: MongoDB filter for metadata

Returns: Promise<Array<SearchResult>>

Type Definitions​

interface SearchResult {
content: string;
documentId: string;
metadata?: Record<string, any>;
score: number;
}

Configuration Examples​

Basic Configuration​

const rag = new MongoRAG({
mongoUrl: 'mongodb+srv://your-connection-string',
database: 'ragdb',
collection: 'documents',
embedding: {
provider: 'openai',
apiKey: process.env.EMBEDDING_API_KEY
}
});

Advanced Configuration​

const rag = new MongoRAG({
mongoUrl: 'mongodb+srv://your-connection-string',
database: 'ragdb',
collection: 'documents',
embedding: {
provider: 'openai',
apiKey: process.env.EMBEDDING_API_KEY,
model: 'text-embedding-ada-002',
batchSize: 100,
dimensions: 1536
},
search: {
maxResults: 10,
minScore: 0.8,
similarityMetric: 'dotProduct'
}
});

Error Handling​

The library provides specific error types:

try {
await rag.search('query');
} catch (error) {
console.error('An error occurred:', error.message);
// Handle the error appropriately
}

For more detailed examples and use cases, refer to: