MongoDB-RAG CLI Reference
MongoDB-RAG provides a command-line interface (CLI) to help manage vector search configurations, test indexes, and run searches efficiently.
📌 Usage
To see available commands, run:
npx mongodb-rag --help
⚡ CLI Commands
Initialize MongoRAG Configuration
npx mongodb-rag init
Initializes the .mongodb-rag.json
configuration file.
Test MongoDB Vector Search Index
npx mongodb-rag test-index
Runs a test on the configured MongoDB Vector Search index.
Ingest a JSON File into MongoDB
npx mongodb-rag ingest <file-path>
file-path
: Path to a JSON file containing documents to ingest.
Create a MongoDB Atlas Vector Search Index
npx mongodb-rag create-index
Creates a vector search index in MongoDB Atlas.
Delete a MongoDB Atlas Vector Search Index
npx mongodb-rag delete-index
Deletes an existing vector search index.
Generate a Vector Embedding
npx mongodb-rag generate-embedding <text>
text
: The input text for which to generate an embedding.
Perform a Vector Search
npx mongodb-rag search <query>
query
: The search query to retrieve semantically similar documents.
Ask a Question About Your Documents
npx mongodb-rag ask <question>
question
: Ask a natural language question and get an answer based on your documents.- Options:
--show-sources
: Display the source documents used to generate the answer--cite-sources
: Include citations in the generated answer
Start an Interactive Chat Session
npx mongodb-rag chat
Start an interactive chat session powered by your document knowledge base.
- Options:
--show-sources
: Display the source documents used to generate each response--cite-sources
: Include citations in the generated responses
Show All Indexes in the Configured MongoDB Collection
npx mongodb-rag show-indexes
Displays all vector indexes available in the configured MongoDB collection.
Show Current MongoRAG Configuration
npx mongodb-rag show-config
Displays the current .mongodb-rag.json
configuration.
Edit MongoRAG Configuration
npx mongodb-rag edit-config
Allows editing of the MongoRAG configuration file.
Clear MongoRAG Configuration
npx mongodb-rag clear-config
Removes the current MongoRAG configuration.
Reset MongoRAG Configuration
npx mongodb-rag reset-config
Resets the configuration by re-running the setup.
Create Environment File
npx mongodb-rag create-env
Creates a .env
file from your .mongodb-rag.json
configuration. This command generates environment variables needed for your RAG application:
- MONGODB_URI
- EMBEDDING_PROVIDER
- EMBEDDING_API_KEY
- EMBEDDING_MODEL
- VECTOR_INDEX
- MONGODB_DATABASE
- MONGODB_COLLECTION
🔍 Search vs Ask vs Chat - When to Use Each
MongoDB-RAG offers three different ways to interact with your document knowledge base:
-
Search: Use when you need to see the raw documents that match your query
npx mongodb-rag search "MongoDB vector search capabilities"
-
Ask: Use when you want a direct answer to a specific question
npx mongodb-rag ask "What are the key features of MongoDB Atlas Vector Search?"
-
Chat: Use when you need an interactive conversation with context retention
npx mongodb-rag chat --show-sources --cite-sources
🗣️ Conversational RAG Capabilities
MongoDB-RAG goes beyond vector search to provide true conversational capabilities with your data:
-
Natural Language Answers: Get complete, synthesized answers to your questions instead of just document snippets
-
Context-Aware Chat: Have multi-turn conversations that reference your document knowledge base
-
Provider Flexibility: Works with both OpenAI and Ollama for embedding and chat generation
-
Source Attribution: Optionally cite document sources in responses with the
--cite-sources
flag -
Transparent Results: View the underlying documents with the
--show-sources
flag
For more details, refer to the MongoDB-RAG API Reference.